BLEKINGE TEKNISKA HOGSKOLA

Adaptive (Goal Oriented Action
Planning for RTS Games

by
Matteus Magnusson Tobias Hall

A thesis submitted in partial fulfillment for the
degree of Bachelor

in the
Department of Computer Science and Communication

June 2010

http://www.bth.se
mailto:senth.wallace@gmail.com
mailto:kazzoa@gmail.com
http://www.bth.se/com/com.nsf/sidor/9d09879aa92f2468c12575c80026bc19!OpenDocument

Declaration of Authorship

Matteus Magnusson and Tobias Hall declare that this thesis titled, “Adaptive Goal
Oriented Action Planning for RT'S Games” and the work presented in it are our own.

We confirm that:

e This work was done wholly or mainly while in candidature for a research degree

at this College.

e Where any part of this thesis has previously been submitted for a degree or any
other qualification at this College or any other institution, this has been clearly

stated.

e Where we have consulted the published work of others, this is always clearly at-

tributed.

e Where we quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely our own work.
e We have acknowledged all main sources of help.

e Where the thesis is based on work done by ourselves jointly with others, we have
made clear exactly what was done by others and what we have contributed our-

selves.

“You must construct additional pylons.”

—StarCraft®?!

1StarCraft is a registered trademark of Blizzard Entertainment, Inc, in the U.S. and other countries.

BLEKINGE TEKNISKA HOGSKOLA

Abstract

Department of Computer Science and Communication

Bachelor thesis

by Matteus Magnusson Tobias Hall

This thesis describes the architecture of an adaptive goal-oriented Al system that can
be used for Real-Time Strategy games. The system is at the end tested against a single
opponent on three different maps with different sizes to test the ability of the Al opposed
to the 'standard’ Finite State Machines and the likes in Real-Time Strategy games.

The system consists of a task handler agent that manages all the active and halted tasks.
A task is either low-level; used for ordering units, or high-level that can form advanced
strategies. The General forms plans that are most advantageous at the moment. For
creating effective units against the opponent a priority system is used; where the unit

priorities are calculated dynamically.

http://www.bth.se
http://www.bth.se/com/com.nsf/sidor/9d09879aa92f2468c12575c80026bc19!OpenDocument
mailto:senth.wallace@gmail.com
mailto:kazzoa@gmail.com

Acknowledgements

We would like to thank the creators of the Spring engine which has done a good job
implementing an engine that supports the modification community. The creators of
Evolution RTS who has done a so far great job with the mod, and are always quick to

answer our questions.

A special thanks to our primary supervisor during the development of this thesis: Johan
Hagelback who always helped us with short notice and was a great support with his
knowledge in RTS games. Our secondary supervisor and examiner Stefan Johansson

that helped us with the more specific thesis layout.

To Steve Rabin who is the editor of the Al Game Programming Wisdom-series and
the authors who contributed with their articles to him; these were very useful when
designing the system. To all those who read this thesis and contributed with finding

errors in the text and sending feedback to us.

Finally, we want to thank our families that has supported us in bad and good times.

iv

Contents

Declaration of Authorship i
Abstract iii
Acknowledgements iv
List of Figures vii
List of Tables viii
Listings ix
1 Introduction 1
2 Brief Description 3
2.1 Architecture of Al Ice 3
2.2 The Engine and Mod That Al Ice Runs On 3

3 Detailed Description 4
3.1 Mechanics of Evolution RTS 4
3.1.1 Armor System 4

3.2 Mechanics of Al Ice System Lo 5
3.2.1 Spring Wrapper e 5

3.2.2 Units e e e e 6

3.2.3 Enemy Information. 0oL 7

3.2.4 Extraction point mappingo 8

3.2.5 Priority System 8

3.2.6 Task System 14

4 Result 21
4.1 Bot Tests o o e 21
4.1.1 RAT .« . o 21

5 Discussion 22

6 Conclusion and Future Work
6.1 Conclusion s,

6.1.1 Project/Architecture conclusion

6.1.2 Things we would’ve

done differently

6.2 Future work
6.2.1 Improvements to the current system
6.2.2 New Features

A Al Ice Architecture
A.1 Interaction Between Agents
A.2 Task System
A.3 Complete Documentation

Bibliography

Index

24
24
24
24
25
25
26

28
28
28
29

30

31

List of Figures

3.1 Evolution RTS damage multiplier chart 5
3.2 Path of the roaming scout Lo 19
A.1 Collaboration diagram between agents in Al Ice. 28
A.2 Task system class diagram. 29

vii

List of Tables

3.1 Energy increment per minute over time

3.2 Energy income over time

41 Allcevs. RAI

viii

Listings

3.1
3.2
3.3
3.4

Damage Type Priorityo 9
Damage Type Priority Scaling 10
Armor Type Priority 11
Energy Increment Over Time 12

ix

Chapter

Introduction

Today there exists a large amount of games; and many of the larger games has some Al
implemented in it. There exists many different kinds of AI; first person shooter, sports,
board games, etc. If you're reading this you have probably played a game where you
thought that the Al knew what you did even though it could not possibly see you—maybe
it went straight to the house you resided in, or had some almighty power—more resources
than it could possibly get under that time, even if it would play perfect in every sense.
Some of these can easily be spotted whereas some are only spotted by the most skilled
players that have played the game a lot. The current now flows towards minimizing
the cheating for Al in games; however this often complicates problems—solutions a lot,
making the game more CPU hungry.

Good for us then that more and more of the CPU is used by the Al system. Physics
will probably move to the graphics card in an early future—although physic support on
the graphics card already exists, far from all games has support for it and if a game has
the support the user still needs an extra graphics card. When the time is right the Al
will hopefully get a decent amount of CPU to do some fancy work and act all natural
without cheating, in fact it’s hard to act as a human if it can cheat.

Real-Time Strategy games are however still behind in this area, most Als cheat
and are statically written through state-machines and the likes. A newer approach is
to base the Al on a goal oriented architecture. The AI will then select what goals
are most beneficial and execute them. Most notably it gets a less static behaviour if
implemented correctly. To be able to turn off the cheating a good resource handling is
needed; which could be implemented through a goal meaning it would handle itself once
implemented correctly. Some sort of scouting also needs to be done and then keep the
information about the enemies’ units, preferable where they are located. The scouting
can be implemented using goals again, and the enemy information could be used with
some sort of terrain analysis.

In our AI, Al Ice, we're going to implement a simple goal-oriented system' with an
adaptive behaviour—meaning it will create tasks that counter the enemies’ behaviour.
E.g. creating units that are good against the enemies’ armada. The intention is to
show that an adaptive goal oriented architecture can compete against the more tradi-
tional architecture (finite state machine system). The method of proving or disproving

We call it a task system; task and goal generally being the same thing.

1

List of Listings 2

this hypothesis is to let the different systems play against each other and monitor the
outcome.

Chapter

Briet Description

2.1 Architecture of Al Ice

The architecture consists of the General that is the mastermind in Al Ice. He forms
plans; practically the same as creating various tasks' that are supposed to lead it into
a victorious defeat of the opponent. To do this it fetches information that has been
collected about the enemy during game play to later decide, create, and run tasks with
highest priority. Al Ice will always try to construct units that counter the opponents
weapon and armor types.

Except the general and tasks there is a) an agent for handling the enemy information
that is updated when a unit enters line-of-sight. The agent also updates the enemy
information about each second, such as the current position of the unit; b) a task unit
handler which handles all our task units—a task unit can simply be described as a
wrapper between a unit from the spring engine and a set of tasks bound to the unit;
¢) extraction point mapping where information about the extraction points are held—if
a point belongs to us, the enemy or is free; and d) the task handler that takes care of all
the active and halted tasks. It also binds and unbinds the connection with task units
and splits the load over several frames making it more CPU friendly.

2.2 The Engine and Mod That Al Ice Runs On

Al Ice is implemented for the Spring engine [1] with the modification Evolution RTS [2].
Spring is only an engine and does not come with a game; therefore a separate ’game’,
also called mod, needs to be downloaded. There are several games available and one of
these is Evolution RTS that Al Ice is especially built for. An important side note is that
Al Ice does not cheat in any sense, no extra resource, disabled fog of war?, or any other
kind of unfair advantages.

LA task always wants to fulfill its goal—whether it is to move to a certain location with a unit or
attack with a group of units.

2Fog of war being a ’fog’ that lies over the battle making it impossible to see enemy units beyond our
units’ sight distance; thus disabled fog of war makes a player or Al able to see everything that happens
on the map

Chapter

Detailed Description

3.1 Mechanics of Evolution RTS

Evolution RTS [2] is an open source game modification created for the Spring engine. It’s
a Real-Time Strategy game featuring both micro and macro-management with intense
battles, real time meaning it’s not turn based and that all the players can issue orders
at any time.

The resource gathering system is automated; i.e. you construct resource gathering
buildings that collects the resources automatically, giving you a constant stream of
income. There are two different kinds of resources; energy and metal. Energy can be
produced with three different buildings: solar collector, fusion reactor and geothermal
power plant. Metal can only be produced with two buildings: metal extractor and metal
maker. The metal extractor building has to be built on top of special sites on the map,
these sites are called “extraction points” and are very important for map control and
metal income, since they produce much more metal than the metal maker building.
Metal is used to construct additional units whereas energy is needed when units fire
their weapons—some buildings also consume energy that is needed for their use; shield
generator is one kind of building that always consumes energy.

To construct units the player need to have factories. There are several different
kind of units in Evolution RTS: Flying, amphibious, all-terrain', and ground units. As
a side not, Al Ice does not use any amphibious units.

3.1.1 Armor System

Evolution RTS uses an armor system [3] that simplifies the damage calculation between
weapons and unit armor; both for balancing units, although this is not our area, and
generating a priority for what units to create which Al Ice does; see 3.2.5 for how the
priority system works.

The damage a unit will do against another unit is calculated by adding it’s weapon
damage times the damage multiplier. The damage multiplier is calculated by the armor
type the unit who gets hit has and the damage type of weapon that fired against the hit

!Can travel on any terrain, even over cliff edges.

List of Listings 5

FIGURE 3.1: Evolution RTS damage multiplier chart

-« g N it - X
Damage and Armor: Types

Plercing Light Me;:ir.um
Heavy Armor 1 0.5 075
NMedidm Armor (& =] o's
Light Armor o775 =
Ecologlical = D1
Bulldings == (@ |

Armored Buliding 1.5 0.1

unit. Each unit has a specified armor and weapon type; provided the unit has a weapon
at all. The damage multiplier chart is shown in figure 3.1

3.2 Mechanics of Al Ice System

In the following sections the most important mechanics of Al Ice are described. Spring
Interface; how the interaction and events are handled. General; the mastermind of Al
Ice. Units; how we handle our own units. Enemy information; how enemy information
is gathered, stored, and used. Extraction point mapping; how we handle the extraction
points on the map, i.e. which are free, under our control, and under enemy control. The
task system; how tasks works, how they are handled, and the connection with units.
In addition to the task system the tasks that are central in Al Ice are described; the
scouting tasks, and the attack task.

3.2.1 Spring Wrapper

Details about the current game can be extracted from this. However it is only possible
to get the information that is either available from start or that the Al can see; meaning
that enemy information can only be extracted from those units that we can see at the
moment. If we want to save some information that needs to be done internally by the
AT and is exactly what 3.2.3 Enemy Information and 3.2.4 Extraction point mapping
does.

Available features from the start are the resource positions; i.e. where metal ex-
traction points can be located, how large the map is, our start position, the available
units, etc.

List of Listings 6

Events

Everything of the Al is handled through events, whereas the update is the most notable
event where a major part of Al Ice gets updated—the event sends the current frame

2. Apart from the update event some more standard events exists; when

of the game
a unit or enemy is created, destroyed, finished, and when an enemy enters and leaves
line-of-sight. To listen to these events other agents need to implement the appropriate
handler, that has approximately the same name as the event. It should then add itself as
an observer to the Spring Wrapper and will then listen to all the events it implements.

If an agent wants to listen to a specific unit’s or enemy’s event it will need to imple-
ment specific handlers for unit events or enemy events respectively. To start listening to
the events the agents should add itself as an observer for all the units it wants to listen
to.

This system makes it very easy to listen to events and only to listen to those that

are relevant for the agent.

3.2.2 Units

All the units that are available in Evolution RTS are grouped with some useful attributes
by Al Ice—these are not the units that are currently in play but units that can be built
or summoned in one way or another. It’s important to note that a unit in Spring can
be both a mobile unit and a building; in fact everything that can be 'marked’ is a unit,
even trees.

unitDef The unit’s definition used by the Spring Engine.
unitName The name of the unit; not the human-readable name but the ’definition’.

canAttackAir If the unit has the ability to attack air; for simpler checking instead of
checking it’s weapons.

armorType The armor type that the unit has. Can be one of the armor types shown
in figure 3.1

damageType The damage type that the unit has; provided that the unit has a weapon
at all. Can be one of the damage types shown in figure 3.1

build True if the unit should be used in the building priority; i.e. if Al Ice should use
it or not.

groups The groups that the unit belongs to. The groups are described more thoroughly
in 3.2.2 Groups.

The unitName, canAttackAir, build, and groups are set in the source-code while the
others values are set during the initialization. The canAttackAir flag would ideally be
set in the initialization, but that information was rather hard to extract; therefore the
canAttackAir is now statically defined in the code.

2Spring always simulates a frame rate of 30 frames per second; meaning that the game time can be
extracted from this.

List of Listings 7

Groups

Units are grouped by their primary use; the groups are static and set in the source code.
There are currently nine groups—however, more can be added easily to the units. Most
units are only in one of the nine groups except the different builders.

Attack force Units belonging to the attack force are mobile units that are able to
attack. Both airborne units as ground units belong to this group.

Armored building Armored buildings consist of buildings that are able to attack.

Builder All units that can build something belongs to this group. This group is pri-
marily used to build new builders for the unit with the highest priority, and as a
wrapper for all the different builders; if there is some information that needs to
be extracted from them. Builders should also belong to another group; factory
or mobile builders, which is mainly used for the priority generation. See 3.2.5 for
more information about the priority system.

Factory A group for all the factories in the game; i.e. builders that are buildings.
Because a factory is a builder it should also belong to the builder group.

Mobile builder Used for all the mobile builders in the game. As with factories, mobile
builders should also belong to the builder group.

Economic These are the units (buildings) that produces either metal or energy.

Scout Units that are dedicated to scouting should be a part of this group. In Evolution
RTS there is one airborne unit which has this as it’s speciality; wide line-of-sight
and because it’s airborne its speed is much faster than ground units. There is also
a rather fast amphibious scout; however as Al Ice doesn’t use amphibious units
this scout isn’t used.

Utility building Consists of all the buildings that gives the player, in this case Al Ice,
with more strategic options; like radar tower, radar-jammer, and nuclear missile
silo. This group isn’t used in v0.3 of Al Ice.

Healer Healers are those specially assigned to heal (repair) the damaged units. In
Evolution RTS all mobile builders can heal, but only the ORBs are designated
healers. This group isn’t used in v0.3 of Al Ice.

3.2.3 Enemy Information

Al Ice needs to know how many enemy units there are, otherwise the priority calculation
will be ineffective. It also needs to know the positions of the enemy units to be able
to order attacks. To meet these demands Al Ice has a uses an agent 'Sighted Enemies’
who’s job is to handle and update all enemy unit information. Since Al Ice does not
cheat it would loose information about the enemy unit if it moves out of sight. That’s
why the last known enemy position needs to be saved. SightedEnemies works a lot like
extraction point mapping and updates itself automatically—it also updates the positions
of sighted enemies regularly, since units can change positions, which metal extraction

List of Listings 8

points can’t. Various information can be extracted from Sighted Enemies; a list of all
enemy units—ordered by armor and damage type if wanted, how much armor and DPS
the enemy has grouped by armor and damage type respectively, and the closest enemy
to a specified point mainly when ordering attacks.

3.2.4 Extraction point mapping

Al Ice needs to save all the information the scouting tasks collects, information about
which extraction points are free for the taking and which points are occupied by an
enemy. To save this information the system listens to events from the Spring engine, such
events as: enemy enters line of sight, enemy destroyed, unit created and unit destroyed.
This way Al Ice will automatically update the information about an extraction point as
any unit, not only a scouting unit, passes by and saves it to a vector. The Extraction
Point Map agent has methods for calculating and returning the position of the closest
extraction point by a specified owner. This allows the General to expand Al Ice’s resource
income and to plan future attacks on enemy outpost’s.

3.2.5 Priority System

Instead of assigning priorities to task, with the exception of a task priority for a task
unit 3.2.6, the priorities are assigned to the available units. The system is mostly based
on other articles [4, 5] for generating priorities, grouping them, and how to balance them
in a more isolated manner.

The units available in the priority system are only those considered at the moment;
usually being all that Al Ice are specified to build—which is done statically in the
code. See 3.2.2 on how the units and groups are handled. The priority system will
only generate® new priorities when necessary; i.e. when there is an available builder.
It checks for available builders a few times each second, thus not making the system
generating new priorities when an available builder which can’t build any of the units
in the current priority list exists.

The priorities are divided into groups; made for the simplicity of tweaking priorities
with the use of specific multipliers, minimum, and/or maximum values for a group. How
the specific group priorities are generated is described in more detail under each group’s
paragraph.

When generating priorities for units, some will have no or a low priority; those under
this threshold will never make it into the priority list. This functionality is useful when
building a specific unit, or if all units from a group should be prohibited at all costs.
It’s currently used with the economics only period, which is run just after the initial
build sequence is completed. In this time all other groups are set to 0 in priority—this
makes the available builders to only build economic buildings and boost our income in
the beginning of the game. If an available builder can’t build any units in the generated
priority list it is skipped.

In the first stage of the priority generation it generates the basic information about
the attack force and armored buildings priority. These are described more thoroughly
in their respective paragraph. The second stage iterates through all the units that is

3generate and calculate has the same meaning and are used interchangeably.

List of Listings 9

taken into consideration when generating the priorities. Since all units belong to at
least one group, it’s then up to that group to generate the priority for the unit. As
always some units need special treatment—it’s the group’s responsibility to handle the
special algorithm needed for the priority generation of the unit. To handle ’special’
units the group simply checks if a unit needs any special treatment using an if-else if—
else statement which contains the units definition name. An example of this could be the
airborne builder, which is the only builder from the mobile builder group that will get
another priority than the minimum builder priority—the number of airborne builders
will slowly, but linearly, increase during the game. If the unit doesn’t need any special
treatment it will default into the else statement and use the default priority generation
for the group. If a unit happens to belong to more than one group it will only keep
the highest generated priority. After the priority is generated it is either added to the
priority list or discarded if the priority is too low, as described earlier. The third and
final stage consists of sorting the priority list and then adjusting the builder priorities;
described in the builder group paragraph.

Group Priority Generation

Attack Force The main calculation of the attack force priority is done in the first
stage of the priority generation. The general idea is that the priorities generated are
based on what armor type is good against them; i.e. what armor type the enemy can
deal least damage to, depending on their current units, and what damage type is good
against them; i.e. what damage type our units should have that will make them destroy
all the enemy units in the least time. Only units that can do us harm will be considered
into the calculation; i.e. the enemies’ attack forces and armored buildings. How the
priorities are generated are described in more detail below.

Damage type priority generation First of all the priority for all damage types
are generated. The pseudo-code describes how the priority is generated and is described
in listing 3.1. The enemyArmorTypeHealth(armorType) returns the total seen health

LisTING 3.1: Damage Type Priority

Map<String , Double> tempDamageHealth ;
double maxHealth = Double . MIN.VALUE;
for (all damage types) {
double health = 0.0;
for (all armor types) {
health 4= enemyArmorTypeHealth (armorType) / damageMultiplier (
armorType, damageType) ;

if (health > maxHealth) {
maxHealth = health;

}

tempDamageHealth . put (damageType, health);

}

that the enemies have of the specified armor type. damageMultiplier(armorType,
damageType) returns exactly what it says; the damage multiplier between the specified

List of Listings 10

armor and damage type. See 3.1.1 on how the Armor System works. The value you get
from this algorithm is how much health the enemy would have had if the DPS? isn’t
changed depending on the armor type. E.g. if the unit has a default health of 1000,
and our damage type’s effectiveness is 0.5 then it would be the same as making the
effectiveness 1.0, keeping the DPS value, and divide the health with the effectiveness
increasing the health to 2000. As can be seen this will generate higher health if the
enemy damage type is ineffective against the armor type—thus the damage type that
has lowest total health is the damage type that should be prioritized.

To keep the priority in reasonable ranges it needs to be scaled, but also inverted since
the damage type with lowest health should get the highest priority. The pseudo-code
for this is described in listing 3.2.

LisTING 3.2: Damage Type Priority Scaling

double scaleFactor = PRIORITY MAX — PRIORITY_MIN;
for (healths in tempDamageHealth) {
double scaledPriority = scaleFactor % health / maxHealth;
// Invert the priority
scaledPriority = scaleFactor — scaledPriority + PRIORITY_MIN;

for (all armor types) {
insertIntoMatrix (armorType, damageType, scaledPriority);
}

}

First the priority, actually the health, gets scaled between 0.0 and scaleFactor. E.g.
if PRIORITY_MAX is 20 and PRIORITY_MIN is 10 then scaleFactor will be equal to
10. The priority is then inverted; note, to get the highest priority (20) the health needs
to be 0 thus the priorities will be linearly scaled. Then the scaled priority is added to
the matrix for all armor types. E.g. if you think of the matrix as columns and rows
the scaled priority is added column-wise for each damage type. Then the scaled priority
from the armor calculation will be multiplied in row-wise.

Armor type priority generation It’s now time to generate armor type priorities
from the enemies’ damage types, that is which type of units that will withstand longest
if all enemy units would target randomly on our units. The concept is really the same
as the damage type priority generation, see listing 3.3. However there are some subtle
differences described below.

The for-loops has now exchanged places; i.e. instead of for (all damage types)
being the outer loop the for (all armor types) is now the outer loop. The dps is
how much total DPS the enemy can do on the current armor type. Thus the armor type
with the lowest DPS should be prioritized. As with the damage type priority the value
needs to be scaled and inverted. The algorithm is just about the same as the damage
type priority scaling and will therefore not be described in further details.

Iterating through attack force units In the second stage all units belonging to
the attack force group will be iterated through it’s method. This method simply fetches

4Damage per second.

List of Listings 11

LisTING 3.3: Armor Type Priority

Map<String , Double> tempArmorTypeDps;
double maxDps = Double.MIN_VALUE;
// Start with armor types instead of damage types
for (all armor types) {
double dps = 0.0;
for (all damage types) {
dps += enemyDamageTypeDps(damageType) * damageMultiplier (
armorType, damageType) ;

if (maxDps < dps) {
maxDps = dps;

}

tempArmorTypeDps. put (armorType, dps);

}

the priority from the matrix, generated in stage one. E.g. If a unit has the armor type
light and damage type explosive the method fetches the information from the row light
armor and column explosive damage.

A bonus priority is also given to anti-air units depending on the how much total
health flying units the enemies have. There are better ways to implement this and one
approach is described in 6.2.1 More accurate unit priority.

The method also decreases the unit’s priority with the amount of units of that type
we already have in game. This is used to generate some more variety to the units we
create. As with the bonus priority for flying units, there are better approaches that can
be implemented, also described in 6.2.1 More accurate unit priority.

Armored Buildings The generation of armored buildings priority is in general the
same as with attack force, but has a much simpler algorithm. The enemies’ DPS against
our armor type doesn’t need to be taken into account since all armored buildings have
armored building armor. For the calculation of our preferred damage type only the
enemies’ attack forces are needed. The rest of the priority generation is the same as for
the attack force priority generation; decrement of armored units we already have, and a
bonus priority for the amount of flying units the enemies have.

Builders Builders only get their priority adjusted in the third face. However a builder
should always be in another group, either mobile builder or factory and can thus get a
'normal’ priority in the second stage. These are described in the paragraphs below.

In the third stage of the priority generation the system checks if it has a builder
that can build the highest priority unit—the builder doesn’t have to be available at the
moment. If no builder exists that can build the highest priority unit a builder unit that
can create the highest priority unit will acquire the FORCE_BUILD priority making it
top priority to build that builder unit. This would have the effect of building the builder
that then can build the actually unit with the highest priority.

Another occasion when a builder will acquire the FORCE_BUILD priority is when
the metal has come above a certain threshold specified in the source code. When it

List of Listings 12

comes over this threshold it’s rather safe to assume that our income is being wasted, i.e
we use less resources than we produce.

Mobile Builders and Factories Of all the mobile builders only the airborne builder
has a special algorithm, the rest will default to the minimum builder priority. You may
ask why only the airborne builder uses an algorithm; the airborne unit exceeds in speed,
both as in travel speed and in performance since a path doesn’t have to be calculated
for the unit when it moves. The amount of airborne builders Al Ice will have increases
linearly over time.

As with the airborne builder, the number of factories also increases linearly over
time.

Economics The general idea is that Al Ice should increase it’s energy income expo-
nentially in the beginning until a threshold is hit. The same goes for metal with the
difference that the income should increase linearly instead of exponentially.

Energy The energy income increment increases exponentially, however there is
a threshold of the increment. When the increment value hits the threshold it will stay
at that value. This is easiest described through pseudo-code and an example, which is
found in listing 3.4 and an example in table 3.1.

L1sTING 3.4: Energy Increment Over Time

double explncrement = INCREMENTEXP x GAME.TIME;
double currentIncome = getIncome (Energy) ;
double increment = explncrement + INCREMENT START;

// Ceil the increment to the mazx value (threshold)
if (increment > INCREMENT THRESHOLD) {
increment = INCREMENT THRESHOLD ;

}
double shouldHave = increment * GAME.TIME;
double diffIncome = shouldHave — currentIncome ;

// Apply fusion priority
priority = FUSION_PRIORITY x diffIncome / FUSIONINCOME;

Most of the variables are self describing; however there are some hidden ambiguous
information to some of them. GAME_TIME is the elapsed minutes since the game
was started. currentIncome includes the income of those economic buildings that are
being built at the moment. At the start of the algorithm the exponential increment is
calculated and added to the increment along with the initial increment; this value get
capped to the maximum value, INCREMENT_THRESHOLD, if it exceeds it. Next the
difference between the current income and the amount of income that Al Ice should
have is calculated. It is then used to set a priority for the Fusion Reactor, which is the

List of Listings 13

only energy producing building Al Ice can build®. FUSION_.INCOME is the amount of
income a single Fusion Reactor produces.

Table 3.1 displays the increment over time with different INCREMENT_EXP val-
ues. INCREMENT_START is set to 5.0 and INCREMENT_THRESHOLD is set to
20.0. Table 3.2 shows a similar table which displays how much income Al Ice should
have after the a certain amount of time.

TABLE 3.1: Energy increment per minute over time

Minutes
) 10 15 20
0.25 |1 6.25| 7.5 | 875 | 10
0.5 | 7.5 |10.0 | 12.5 | 15.0
1.0 | 10.0 | 15.0 | 20.0 | 20.0
1.5 | 12.5 | 20.0 | 20.0 | 20.0

Exp

TABLE 3.2: Energy income over time

Minutes
5 10 15 20
0.25 | 31.25 | 75.0 | 131.25 | 200.0
0.5 | 37.5 | 100.0 | 187.5 | 300.0
1.0 | 50.0 | 150.0 | 300.0 | 400.0
1.5 | 62.5 | 200.0 | 300.0 | 400.0

Exp

As can be seen in these tables are that the increment and income grows very fast,
even for low exponential values.

Metal The metal income increases linearly over time. Since there are two ways of
producing metal; through metal extractors, the preferred way, or through metal maker,
which converts energy into metal. Metal extractors needs to be built on specific spots
on the map thus limiting the number of metal extractors one can build. For 1) there are
a limited number of extraction points; and 2) enemies will also want those extraction
points making them an intensive spot for battles. Metal makers can be placed anywhere
but draws a huge amount of energy; 20 energy or 2 fusion reactors. Thus building metal
extractors when extraction points are available would be best.

Al Ice always tries to own a certain amount of percentage of all extraction points
found on the map. Before it has these amounts of extraction points metal extractors
will get a higher building priority. After Al Ice has occupied the extraction points it will
still try to build metal extraction until there are less than x free and the percentage of
the free spots are less than y; x and y are specified in the source code. Note that both

5There are two other buildings that can produce energy. Fusion reactors have the benefit of producing
a lot of energy on a small area and can be built anywhere.

List of Listings 14

have to be true if the priority for metal extractors should be zero. This helps Al Ice
cope with the difference between huge and small maps. E.g. If a map only has 10 metal
extractors it would probably be good to get a fourth metal extraction point but not the
fifth. This can be achieved by setting x to 10 and y to 25%. Now if the enemy has 4
extraction points and we have 3, 30% would then be free, but only 3 extraction points.
Thus we decide to expand our income to the 4th extraction point. Now only 20% is free
making the statement false. In a large map where there might be up to 100 extraction
points Al Ice would stop when only 9 extraction points are free. This could be seen as
the percentage value of 10%—it still builds when 10% is free, thus it stops at 9%. In a
short summary, if it’s a large map it would use the fixed value and in a small map the
percentage value would be used.

When a metal extractor can’t be built due to the algorithm above, metal maker
will instead take the place of producing metal. This is also why the energy increment
isn’t linear because more energy is needed later in the game, both because of units but
also because Al Ice tries to create metal makers instead of metal extractors.

Storage Storage buildings aren’t used as much as human players use them. Al Ice
usually always have the current metal near zero—if it doesn’t it will build a new builder
that makes it go to the bottom again. Thus the only reason for creating storage is energy.
Energy isn’t used all the time and some times it’s needed more than others making
storage buildings the perfect buffer for energy. The priority of storage is increased by
the number of the current energy income.

Utility Buildings and Healers Buildings and healers aren’t implemented in Al Ice
v0.3. The buildings only enhance the strategic options that can be used in Al Ice but
aren’t a part of this thesis. The same goes for healers.

Scouts Al Ice always wants to scout; thus making the priority of scouts very high,
in fact if Al Ice doesn’t have SCOUTS_MIN it will force the build of a scout using
FORCE_BUILD priority value. That’s really all about the scout priority.

3.2.6 Task System

The task system consists of a task handler; which handles all the active and halted
tasks—task units; which is easily described as a wrapper for a unit and its tasks—the
task base class; all tasks derive from this class—task observers; task observers implement
the ITaskObserver interface.

The task system is based on several articles about various task systems found
throughout the Al Game Programming Wisdom series added with our own spice—where
inspired it will be cited.

Tasks

A task is in general the same thing as a goal in our implementation; i.e. a task wants to
fulfill it’s goal—a move to task will try to move the unit to the specific location. There
are different kinds of tasks; these are described in 3.2.6. All tasks derive from the task

List of Listings 15

base class that consists of several abstract methods which the derived classes need to
implement.

execute() : Status
Executes the task; usually this is where an AICommand is sent to the Spring
Engine if it hasn’t been sent already. The execute method is mainly based on the
system described in [6]. The method also returns a status depending on if the task
is running, done either by successfully completing or failed by some means.

EXECUTED_SUCCESSFULLY When a task has executed successfully, but

isn’t done.

COMPLETED_SUCCESSFULLY The task has completed the task success-
fully.

FAILED_CLEANLY One of the return statuses when a task has failed. This
status is returned when the task hasn’t changed the environment; i.e. when
no resources has been used, both resources as in metal and energy, and units.
E.g. for an attack task this would be before a move or an attack command
was issued. Another example is when a unit should be built but the builder
died before the command was issued.

UNEXPECTED_ERROR This happens when a task has changed the environ-
ment and then fails; i.e. when resources has been used on the task.

halt()
Halts the task; if the task has sub-tasks these also get halted. Note that the task
itself needs to handle this and that all method calls to halt only should be done
through the task handler’s haltTask(...). If the task is bound to a unit it will
issue the stop command to the unit.

resume ()
Resumes the task; as with halt, if the task has sub-tasks it will need to resume
these manually. This method can be seen as a restart method for the task.

Task types The tasks can be split into two groups; 1. Simple task which only consists
of the task alone; 2. Composite task which can be composed of simple tasks and/or
composite tasks.

Task Unit

The task unit can easiest be described as a wrapper of a Spring unit and tasks. A task
unit can have three tasks directly bound to it; i.e. the tasks it’s currently executing. A
unit is not considered free if it isn’t currently executing a task, although there is one
exception to this.

Task priority Tasks are ordered into three priorities; High, medium, and low. Low
is treated as an idle task; meaning that if a task unit has an idle task and no medium
and high tasks it will be treated as free. These priorities are sufficient for the current
use—adding more priorities are easy since they are a part of an enumeration; thus it’s

List of Listings 16

‘only’ to add an enumerate and increase it’s size. A similar approach can be seen in [7]
where units have three different goal queues; a long-term goal queue, that can roughly
be compared to the idle task; the reactive goal queue with a medium priority task; and
lastly the immediate goal queue with a high priority task.

High-level task A task unit can also have a high-level goal bound to it. This will
have the effect of always making the task unit busy. E.g. this functionality is used in the
attack task making task units busy. If it wasn’t used, units would be free when waiting
for others to catch up in the regroup or move to destination position.

Setting tasks If the task unit has a task with higher priority when a new task is
added, the newly added task will halt immediately before it’s execute is run. Likewise
if the task unit has a lower priority the lower priority task will get halted. If a task is
inserted and there already exists another task with that priority an error will occur and
the method for setting a task will return false.

Removing tasks Task units implement the ITaskObeserver interface so that they
automatically remove tasks when they are completed. This makes the system very easy
to use; however to bind a task to a task unit the appropriate run method in the task
handler needs to be invoked. If a task is completed it first searches through the tasks
in the priority task list; if it’s found the task will be removed and a lower priority task
will be resumed if no higher task priority is found. Note that a higher task priority will
only exist if the task was forcibly removed, i.e. it didn’t complete or fail naturally. If
the task wasn’t found in the ordinary task it 'must’ be a high-level task; if it were the
high-level task it will remove it, else it will just log that a severe error has occurred.

The Task Handler Agent

The task handler manages all the active and halted tasks; finished tasks are automati-
cally removed and their respective observers are called. A task can only have one task
observer that isn’t a task unit. If a task is bound to one or more task units they are also
added to the observer list. The task handler supports latent execution meaning that it
runs the task over multiple frames, it also runs one iteration through all the tasks over
multiple frames.

Task grouping In addition to the standard task type, they can be grouped by another
category; how they interact with task units. @) When a task interacts with exactly one
unit, i.e. when the task is a simple task. Note that just because the task is a simple task
it doesn’t mean that it interacts with a unit—an abstract task is an example of this; b) a
high-level task for one or more units. This should be the task that directly handles the
sub-tasks that interact with the units; and c¢) tasks that has no direct interaction with
units. This includes abstract tasks which are simple tasks but with no unit bound to
it—e.g. a task that gets completed when we have a certain amount of units available,
and high-level tasks which handle other high-level tasks.

List of Listings 17

With this it’s easy to manage the connection between a task and units. Either there
is a direct connection, an indirect connection, or no connection. Which leads on to the
next topic; adding and handling tasks and thus the task unit.

Adding a task to the task handler When a task gets added to the task list tasks
are added to the task handler through three different types of run methods; two of whom
can bind a task to a task unit. These methods are described just below.

run(Task, ITaskObserver)
Adds a task to the task handler with an optional task observer. Does not bind a
task unit to the task.

run(Task, ITaskObserver, TaskUnit, TaskPrioriy)
Adds the task to the task handler and binds a task unit to it with a specific
task priority. If the task unit already has a task with that priority the method
will return false and no task is added. When the task is finished the task unit’s
onTaskFinished(Task, Result) will be invoked and the task will be removed

from the task unit.

run(Task, ITaskObserver, LinkedList<TaskUnit>, TaskPriority)
Except adding the task to the task handler it binds the task as a high-level task to
the units in the list. If the task unit already has a high-level task the method will
return false and no task will be added. When the task is finished all the task units’
onTaskFinished(Task, Result) will be invoked and the high-level task will be
removed from all task units. The task priority isn’t used at the moment, but is
intended to be used when task units can have several high-level goals.

As can be seen all methods have two arguments in common; the task and the optional
task observer. It should also be noted that a task only allows one task observer, if you
exclude the task units which handles themselves. It is implemented in this way to lower
the coupling between classes and keep the hierarchy intact; the task should only have
one, or NO OWner.

ITaskObsever interface

To listen to tasks that finish a class needs to implement the ITauskObserver interface.
When a task is completed, either successfully or has failed by some means the task
observers are called. The arguments are the task itself so that the observer can determine
which task that was completed if it listens to more than one, and the result of the task
being one of *Statuses’ described in 3.2.6 Tasks.

Central tasks
These tasks are the marrow of Al Ice; without these Al Ice would probably stand still
and do nothing.

Move close to ... Does as it sounds. Moves a task unit to a specified location
using either a calculated path (for ground units) or a direct location (for flying units).

List of Listings 18

It returns as completed when the unit has moved close to the destination; this can
be specified by an input parameter ’radius’ to the task when creating it. If the unit
somehow fails to move to the destination, it dies or gets stuck, the task will return that
some unexpected error has occurred.

Build unit by unit Builds a unit by a unit. The task might seem rather simple
but there are some mechanics that are implemented to get this to work as would be
expected. The simple fall-through is described below.

1. Checks that the builder really can build the unit; if it can’t it will fail cleanly.

2. A listener is added for the unit so that it can listen to when it creates a new
building and save that unit.

3. A build spot is calculated; This makes sure that we don’t build where we stand,
because it takes some extra time to move from this area first. It also checks so
that the building position isn’t on an extraction point rendering it unusable.

4. Waits until the unit has been built and then returns completed successfully.

The task always checks if the unit that is being built isn’t null; provided that the builder
has started to build a unit. There is also one more exception that needs to be handled;
when the builder becomes idle before the task has finished building—this usually mean
that the unit failed to move to the specified position, or could not build on the position.

Initial build sequence The initial build sequence is a task that can contain several
tasks. Each of the tasks in it’s list will be executed in a sequence. Al Ice only uses this
task at the start of the game to construct all fundamental buildings and units, but the
task can be used in other ways e.g. you can’t build a tank before a tank factory has

been constructed.

Scouting Al Ice has an abstract scout task that is derived from the main Task class.
The scout task handles and executes the move tasks but gets the target destination
from it’s derived classes. Al Ice currently has three different kinds of scouting tasks
implemented: random, roaming and extraction point.

A scout task will be finished if all destinations have been visited and the unit has
returned to base, or if the scout unit has been destroyed.

Al Ice depends on the information these scouting tasks provides since Al Ice does
not cheat. That’s why it always has a scout task running. A big down side with this
method is that many scouts might get destroyed which means that additional scouts
will have to be constructed.

Random The random scout task just generates a number of random positions on
the map. It was primarily implemented to test the scouting system and it’s components,
Al Ice does not currently execute this task.

List of Listings 19

Roaming The roaming scout task is used to scout the entire map, it uses an
algorithm to find a route that will make the unit see almost the entire map. But there
is one great disadvantage with this scouting method; it takes even a fast moving unit
a very long time to finish the scouting route. The path of the scout can be seen in
figure 3.2 where the black dots are the calculated positions and the start dot is our start
position. The distance between the calculated positions are the same for all sides. The
number of dots per side is calculated by using the appropriate length of the side, height
or width, and dividing it with the preferred distance between the dots.

FIGURE 3.2: Path of the roaming scout

Extraction point The extraction point scouting task is used to scout all the
metal extraction points on the map, the scout unit will visit the closest non visited
extraction point until every extraction point has been visited. This task gives us very
valuable information, just like the roaming scout task, but it’s much faster to execute
and therefore gives results faster which benefits our priority system. However if the
extraction points aren’t scattered in a favorably way this scout task will not explore the
whole map leaving black undiscovered areas.

Attack tasks Al Ice does not have a complete set of attack tasks. For v0.3 of Al Ice
two versions of attacks have been implemented. A ground attack that attacks ground
targets, and an air attack that attacks air units. Both of these tasks derive from the
base attack that is an abstract task class.

Attack Target Attack target is a simple task when assigning a unit to attack a
single target. The unit will hunt down the target as long as it is alive and can be seen
by Al Ice. If it’s killed it will return a successful completion whereas it will return an
unexpected error when the target escaped from our line-of-sight.

Base attack The abstract task class that ’all” attack tasks derive from. The base
attack task needs a set of attacking units and optional healers if the attack group should

List of Listings 20

have designated healers to it. However the healers aren’t used in the current version,
but are implemented as a stub feature.

When the base attack is run it starts off with regrouping all the unit to the group’s
center position. If this isn’t done the units could be scattered around in the map and
would not attack as a mass. As soon as all units has reached the regroup position it
will find a target destination to go to. This destination if found using the abstract
method getTargetLocation() which the derived classes implements; thus the derived
class can find a target destination. E.g. it can be an outpost, flying unit etc. When
the target destination is reached and cleared of enemies it will try to find a new target
destination—this will keep going until all the attacking units are dead.

Whenever an enemy unit is close to the groups center position it will assign attack
tasks to attack the enemy for all attacking units. To get a close enemy it uses the second
abstract method getCloseEnemy () that the derived classes implements; this makes that
the derived class has total control of deciding which enemy to attack. After the enemy
has died or escaped the units returns to their previous task; regroup or move to target
destination.

Ground attack The ground attack that derives from base attack has one primary
strategy; destroy the enemies metal extractors if some exists (if we have seen one lately).
If it can’t find any metal extractors it will target the nearest enemy ground unit. The
getCloseEnemy () simply returns the closest enemy ground unit to the group’s center
position that is inside a certain radius. The task takes a set of attackers as input
parameters and optional healers, which is what the base attack task needs. The General
decides how large the attack force should be.

Air attack The air attack only attacks air targets, being that air units are in
minority of the units the number of air attacks will probably not be high if the enemy
doesn’t use a huge amount of air units. getTargetLocation() returns the last seen
position of an air unit and getCloseEnemy returns the closest enemy air unit that is
inside the range specified by a status. As with the ground attack task it needs an attack
force and the General decides how large the attack force should be.

Chapter

Result

The support for Evolution RTS is rather low and there were some bugs with the Shard!
AI; thus we could not test Al Ice against it. However Al Ice was tested against RAI
v(0.601, which is a bot that supports multiple mods. The ’only’ available documentation
on RAI is the actual source code[8] with almost no comments. This makes it hard to
describe and understand why RAIT uses different strategies from time to time.

The test was performed on three different maps; 1) CaisRevenge is a smaller, but
not symmetric map; 2) DeltaSiegeDry which is medium sized symmetric map and is a
very popular map on-line; and 3) DeltaSiegeDryRevX v3 is actually the DeltaSiegeDry
map but mirror at the bottom making doubling the size of the map. To get a fairly
good and equal result the test was run 10 times on each map where the Als changed
start position after 5 times. The fastest, longest, and medium time is calculated, where
these values only applies when Al Ice won. The time format is minutes:seconds.

4.1 Bot Tests

4.1.1 RAI

The test results between Al Ice and RAI v0.601. As can be seen in table 4.1 Al Ice won

TABLE 4.1: Al Ice vs. RAI

AlTce | RAT | % | Medium | Fastest | Longest
CaisRevenge 10 0 100% 16:16 09:10 25:00
DeltaSiegeDry 10 0 100% 20:27 08:57 31:55
DeltaSiegeDryX_v3 9 1 90% 23:13 08:32 38:21

all times except one match on the big map 'DeltaSiegeDryRevX_v3’ where Al Ice lost
after half an hour. This sums up to approximately 97% chance that Al Ice will win over
RALIL

! Another thesis bot currently developed.

21

Chapter

Discussion

Al Ice did splendid against the RAI v0.601, 97% chance of winning is not bad. On the
map that Al Ice lost RAI quickly built outwards towards Al Ice and cornered it. Since Al
Ice only has a simple strategic implemented it wouldn’t just move past the first "block’,
there actually was a free path to a whole other area, and continue to expand but was
instead trapped. A simple terrain analysis would’ve helped it overcome this situation.

Since RAI really plays randomly there were one time when a game ended just after
about eight and a half minutes on the big map. RAI simply didn’t expand at all thus it
was just for Al Ice to storm the base—which didn’t have any units because of the low
metal income when it didn’t expand.

Another one unofficial test was run on an extremely small map—Al Ice lost. It
probably lost due to the fact that it’s main strategy is to attack with mobile units and
not to attack with defensive buildings, whereas RAI built towers that could attack a
long distance (the whole map) which destroyed our resources making us an even easier
target.

Another important fact to mention is that the RAI AT is using a map cheat, which
Al Ice isn’t; this means that RAI got an unfair advantage, but this only shows the
effectiveness of the adaptive priority calculation. RAI could also have a simple terrain
analysis that can be read from the change-log[8]. How advanced it is isn’t mentioned.

When playing as a human against Al Ice it’s also fairly easy to win if you know how
it acts. One strategy that works is to get a great deal of extraction points on the map
and build towers around those that are closest to Al Ice—its highest attack goal is the
closest extraction point. Thus it will leave the other extraction points in peace and you
can then start building up a good tower defense. You can then either continue expanding
the base through building towers and using an tower attack strategy or creating units
and attacking with them.

The second strategy is to defend a smaller area while building nukes, since Al Ice
has no defense against those at all. When you have 2-3 nukes you can start building
a smaller attack group and attack while launching the 3-4 nukes you will have by that
time.

When the Shard Al gets operational one could have it battle Al Ice and see how
well the system does against the official Al of Evolution RTS. The Shard Al uses a map
cheat, so it already has an advantage—but it will nevertheless be fun to test how it

22

List of Listings

23

competes against it, even though Al Ice isn’t advanced at all.

Chapter

Conclusion and Future Work

6.1 Conclusion

An adaptive AI that doesn’t cheat can beat a ’static’ Al that does. However care
must be taken when adjusting the priorities, and it can be rather hard to adjust the
priorities to work for ’all’ situations. With a better placement of buildings and attack
algorithms it would probably be overwhelming for a human player to keep up with the
micromanagement which would certainly be implemented in a real product.

6.1.1 Project/Architecture conclusion

Creating a good architecture that is maintainable and flexible from the beginning and
plan for extra functionality helped us enormously. This made it very easy for us to
extend the functionality of many components when we needed. If a new feature was
added a change was often only require in one or two classes, seldom more than two. See
A for a class diagram of the architecture.

We have both gained enormous experience working with this project; we understand
a large amount of how the Spring API works, how much work and how hard it is
to generate priorities for units—especially attacking units, how a task system can be
implemented and used which isn’t specific for the RTS genre, and a lot of other AT and

non-Al related topics.

6.1.2 Things we would’ve done differently

In fact there aren’t much that we wouldn’t do the same. However there is one area that
Al Ice isn’t very good of, performance. It uses a lot more of CPU than other bots, that
is mainly because most parts of the system isn’t really optimized at all. However that
wasn’t a part of the problem, and with more time some of the performance problems
when running with a faster speed could have been fixed. Playing as a human against Al
Ice in normal speed wasn’t any problem though.

24

List of Listings 25

6.2 Future work

There are many parts of Al Ice that can either be improved, added, or replaced entirely
by something else. You can probably find several features that can be a base for thesis

work.

6.2.1 Improvements to the current system
Priority System

Optimized priority generation Instead of generating priorities for all the units
when we have an available builder it would be better to only generate priorities for the
units that the available builder can build.

More accurate unit priority The current priority system does not take into account
our own DPS into the calculation of the damage type in the attack force priority, and
armored buildings priority generation. The effect of this would be that we create many
units that are good against the enemy’s armor type, and when we have enough it would
start to create units that are good against the second most used armor type. To get
a more variety the units priority currently decreases with the number of units that we
already have. However this will not make other units which share the same damage type
get lower priority which is the desired effect.

For anti-air units there could be some sort of threshold. I.e. Al Ice should always
try to have a certain amount of anti-air units, even when no air units have been spotted.
This base amount of anti-air units should get higher priority if an air unit has been seen.
When the threshold is passed the calculation is done as now; anti-air units get a bonus
priority depending on the size of the enemies’ air units.

Another approach is to insert a new armor type, flying, and a new damage type,
anti-air. The damage multipliers for the all other damage types will be skipped in the
priority calculation. The effect of this would make anti-air units have the lowest armor
type health if they only consider the air units making them highest priority to create.
However this functionality needs to be implemented with the improvement discussed
above where our own DPS is taken into account. If it isn’t taken into account it will
make Al Ice to literally spit out anti-air units.

Better economics priority over time Currently Al Ice will always try to increase
it’s current income linearly for metal and almost linearly for energy. However this
algorithm has one major flaw, when an enemy destroys lots of resource buildings it will
most certain make the Al to create resource buildings it top priority rather than creating
a balanced amount of defensive and recourse buildings.

Task system and tasks

More than one high-level task per task unit Instead of only having one high-level
task task units could have the ability to have different high-level tasks with priorities
and a set of 'normal’ tasks for each high-level task. This would have the similar effect
of stacking tasks. E.g. a task-unit could have a high-level task ’attack’ with a normal

List of Listings 26

priority; the active tasks being MoveCloseTo (normal priority), and AttackTarget (high
priority). Maybe the enemy decides to attack and our unit is close to the attacking
position; making the General assign a new high-level task 'defend’ with high priority to
the unit; this would push the current stack of 'normal’ tasks and a new empty set would
be available where the unit would get a new MoveCloseTo task and AttackTarget task.

Base attack

’Checkpoints’ to the target destination in base attack The base attack
task could be improved by having several regroup positions on the way to the target
destination—mnow the units are scattered in a fine line due to the fact that units have
different moving speed.

Advanced grouping Instead of sharing the same attack target for all attacking
units it could be split into the type of the damage type the unit has; creating one list
for each kind. Then changing the getcloseEnemy() to getCloseEnemy(damageType);
this would make the derived classes able to chose different targets, i.e. those that are
effective, for the different kinds of damage types—making Al Ice destroy targets quicker.

The intention was that the attack target task should look for the best suitable
enemy; e.g. if there are several enemy units in attack range, look for an enemy with an
armor type that is weak to the units damage type. This way Al Ice would destroy it’s
enemies much faster and with minimal loss.

6.2.2 New Features
Better path finding

Al Ice path finding and movement system relies on the path finding implement in Spring
which is not advance at all; it only has a path finding for the terrain, but not the
buildings placed on the map. Units using the internal Spring path finding can easily get
stuck, if they try to move in the same direction they will still be stuck and might make
more units get stuck. By implementing an overlay on the base path finding to include
building avoidance, i.e. not try to move straight through buildings, many functions
would function better.

Advanced terrain analysis

An implementation of advanced terrain analysis would probably improve the probabil-
ity to beat the enemy. Flanking positions is one good example that would be useful,
but most of all is probably where to build defensive (armored) buildings and regular
buildings. A test could be conducted to battle this version of Al Ice and how important
terrain analysis is.

Dynamic unit priority

One could implement a dynamic unit priority. Dynamic meaning a unit priority system
that would work on every modification based on the Spring engine. This will probably
make the Al more attractive because of the popularity of the other mods.

List of Listings 27

Task priority and planning

Right now Al Ice does not plan or care about the future of the game, all priority cal-
culation is just for the current moment and the General does only try to use all the
resources at all time. If one implemented a task priority and a planner for the General.
The planner could also be implemented without a pre-generated task priority, it would
just analyze the outcome of executing the task and then adding a priority to the task.

Lua support

With Lua support it would be easy for more advanced ’users’ to implement more func-
tionality into Al Ice, mostly through tasks. With a planning system it would be relatively
easy create new tasks and add them in the set used by Al Ice. It would also make the
user able to customize its behaviour by maybe removing or replacing tasks.

Various team play features

As of now Al Ice will act as a stubborn child if a player or an Al plays with it; it
wants everything for itself. A new feature could be the ability to play with others in the
same team. Three different approaches could be used; One for interacting with other
team-members that also are Al Ice, i.e. the two Al-players would act more or less as
one; another approach when playing with other Als probably that the other AI is the
‘master’, i.e. when it attacks Al Ice attacks; and the last approach when interacting
with humans. The use of chat would be a great idea of interaction, whereas the player
could assign the Al to do specific things; maybe build an big air attack group, or defend
the base. It would also be possible to make Al Ice come up with plans itself; how to
attack, what units to build, etc.

The other aspect of team play is the enemy; how many players are there in a team
and are there many teams? A good question would then be who to attack and could be
implemented with the use of goals.

Playing at the same level as the opponent

Instead of always trying to do it’s best the AI could be made more stupid when the
opponent isn’t as good with the goal to create a 50-50% success rate. Creating an Al
like this would make it more fun to play against, and as you get better it will also.

Appendix

Al Ice Architecture

A.1 Interaction Between Agents

FIGURE A.1: Collaboration diagram between agents in Al Ice.

The General generates
Al lce is the interface class that the building priorities for
performs commands and fetches the units, It also groups
e;rr:‘dergg?:lelletrhheaP:sl.ig information from the Spring API. units together and forms
' attack tasks.

: Allce : update()
- 1 — ,
__l : TaskHandler T update() . General

: unitCreated(unit : Unit, builder : Unit) : enemyEnterLOS(enemy : Unit)

- - When a metal extractor is created
J : ExtractionPointMa {or destroyed) it's owner gets set . SightedEnemias
- olghtedeEnemies

in the extraction point map.

. onTaskFinished(task : alice.tasks.Task, status: Status)

|setTask(task : alice.tasks. Task, taskPriority : TaskPriority) : boolean When an enemy enters LOS it's
position is added or updated.

Enemies that haven't been seen
— for 'some’' time will disappear from

this list.

The TaskUnit is a wrapper for a unit
that can have several tasks and a
high-level task,

When a task is added or is completed
the appropriate method in the
TaskUnit is called to bindfunbind the
task with the unit.

Most of the system is described in comments inside the figure. To avoid making
the diagram more cluttered by text and connections than it already is, only the most
important methods are covered.

A.2 Task System

Figure A.2 shows the central parts of the task system. Some of the functionality has been
described in 3.2.6, thus this figure is mostly for enlighten and gather all the functionality
in one place.

28

List of Listings 29

FIGURE A.2: Task system class diagram.

alice.TaskHandler

+ TaskHandler{allce : Alice]

+ runitask : alice.tasks.Task, taskObserver: alice.interfaces.TaskObserver) : boolean

+ runitask : alice.tasks.Task, taskObserver: slice.interfaces. TaskObserver, taskUnit : TaskUnit, taskPriority : TaskPriority) : boolean

+ runthighLevelTask : alice.tasks,Task, taskObserver : alice.interfaces. TaskObserver, taskuUnits : LinkedList<TaskUnit=>, taskPriority : TaskPriority) : boolean
+ removeltask : alice.tasks.Task) : boolean

+ halt{task: alice.tasks Task) : boolean

+ resumel(task : alice.tasks. Task) : boolean

+ update()

alice.TaskHandler. Entry
+ mTask: alice tasks Task
+ mStatus : Status
+ mTaskObservers : LinkedList<TaskObserver=
+ Entry(task : alice.tasks.Task, taskObservers : LinkedList<[TaskObserver=]
+ Entry(task : alice.tasks.Task, taskObserver : alice.interfaces [TaskObserver)

+mTask
alice.TaskUnit
alice.tasks.Task 0-3 ¥ . .
+ TaskUnit(allce : Allce, unit : Unit]
+ Task{allce : alice.Allce] + setTask(task : alice.tasks Task, taskPriority : TaskPriority) : boolean
+ execute() : Status -miTasks + setHighLevelTask(highLevelTask : alice.tasks.Task) : boolean
+ halt() + getUnit() : Unit
+ resume() e+ destroyunit()
+ getUnitPos() : AlFloat3
-mHighlevelTask | 4 getDefNamel) : String
+ getunitld(} : int
+ getDef() : UnitDef
«interface» lAeeeee] + getTask(taskPriority : TaskPriority) : alice.tasks. Task
alice.interfaces.ITaskObserver + isFree() : boolean | -
+ onTaskFinished(task : alice.tasks Task, status : Status] : gs%z;l‘:s;?:%%(.t:sﬁ%gllec::tjams‘}((;r?ausi. status : Status)

A.3 Complete Documentation

For a complete documentation on the API we refer to the javadoc documentation. If
the page is off-line or isn’t available it could have been moved, please email on of the
authors Matteus Magnusson Tobias Hall .

http://alice.dmgame.org/doxygen/
mailto:senth.wallace@gmail.com
mailto:kazzoa@gmail.com

Bibliography

Spring homepage, May 2010. URL http://springrts.com/.
Evolution RTS, May 2010. URL http://www.evolutionrts.info/.

Forboding Angel. How does the new armorclass system work?, April 2010. URL
http://www.evolutionrts.info/?p=446.

Kevin Dill. Getting started with decision making and control systems. In Steve
Rabin, editor, AI Game Programming Wisdom 3, pages 321-330. Charles River
Media, 2006.

Kevin Dill. Embracing declarative ai with a goal-based approach. In Steve Rabin,
editor, AI Game Programming Wisdom 4, pages 229—-238. Charles River Media, 2008.

Alex J. Champandard. Getting started with decision making and control systems.
In Steve Rabin, editor, AI Game Programming Wisdom 4, pages 257-264. Charles
River Media, 2008.

Brett Laming. The marpo methodology: Planning and orders. In Steve Rabin, editor,
Al Game Programming Wisdom 4, pages 239-255. Charles River Media, 2008.

RAI source code, May 2010. URL http://springrts.com/wiki/AT:RAT.

30

http://springrts.com/
http://www.evolutionrts.info/
http://www.evolutionrts.info/?p=446
http://springrts.com/wiki/AI:RAI

Index

architecture, 24, 28
armor system, 4
armor type, 4, 10
attack force, 7, 9

base attack, 19
base attacks, 26
builder, 7, 11
factory, see building-factory
mobile, 7, 12
building
armored, 7, 11
economic, 7, 12
factory, 7, 12
utility, 7, 14

command
stop, 15

damage type, 4, 9

economics only, 8

Evolution RTS, 3

extraction point
map, 7

General, 3, 8, 20
ground attack, 20
groups, 7

healer, 7
initial build sequence, 8, 18

priority
armored building, 11
attack force, 9
builder, 11
energy, 12

factory, 12
healer, 14
metal, 13

mobile builder, 12

scout, 14
storage, 14

utility building, 14

priority system, 8

scout, 7, 14
sighted enemies, 7

task, 14, 25
abstract, 16
composite, 15
execute(), 15
halt(), 15
priority, 15
resume(), 15
simple, 15
type, 15

task observer, 17

task system, 25

task unit, 15

31

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 Brief Description
	2.1 Architecture of Al Ice
	2.2 The Engine and Mod That Al Ice Runs On

	3 Detailed Description
	3.1 Mechanics of Evolution RTS
	3.1.1 Armor System

	3.2 Mechanics of Al Ice System
	3.2.1 Spring Wrapper
	3.2.2 Units
	3.2.3 Enemy Information
	3.2.4 Extraction point mapping
	3.2.5 Priority System
	3.2.6 Task System

	4 Result
	4.1 Bot Tests
	4.1.1 RAI

	5 Discussion
	6 Conclusion and Future Work
	6.1 Conclusion
	6.1.1 Project/Architecture conclusion
	6.1.2 Things we would've done differently

	6.2 Future work
	6.2.1 Improvements to the current system
	6.2.2 New Features

	A Al Ice Architecture
	A.1 Interaction Between Agents
	A.2 Task System
	A.3 Complete Documentation

	Bibliography
	Index

